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• Motivation for mm-wave cellular for 5G 
• Key Requirements for Channel Models: 

• Multipath Channel Statistics  
• Simulation/Beamforming 
• PHY/MAC prototyping 
• Cooperation 

• NYU WIRELESS and industry first-movers 
are making new investments for mmWave 

Agenda  
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NYU WIRELESS Mission and Expertise 
• EXCITING NEW CENTER:  25 faculty and 100 students across NYU 

 
• Solving problems for industry, creating research leaders, and developing 

fundamental knowledge and new applications using wireless technologies 
• NYU-Poly (Electrical and Computer engineering) 
• NYU Courant Institute (Computer Science) 
• NYU School of Medicine (Radiology) 

 
• NYU WIRELESS faculty possess a diverse set of knowledge and expertise: 

• Communications (DSP, Networks, RF/Microwave, Antennas, Circuits) 
• Medical applications (Anesthesiology ,EP Cardiology, MRI, Compressed 

sensing) 
• Computing (Graphics, Data mining, Algorithms, Scientific computing) 
–Current in-force funding: 
• ~ $10 Million/annually  from  NSF,  NIH, and Corporate sponsors 
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About NYU  
• New York University 
• One of the largest  and oldest private universities in the USA 

(1831) 
• Origins in Telecom: Samuel Morse (Morse Code) first faculty 

member 
• Pioneering the Global Network University w/campuses in Abu 

Dhabi, Shanghai, Toronto, Buenos Aires, and 18 other countries 
• Faculty have received 34 Nobel Prizes, 16 Pulitzer Prizes,  21 

Academy Awards, 10 National of Science Medals 
• New focus in Engineering for the Urban, Telecom, Bio-Med future 
• NYU is ranked #32 in 2013 USNWR National University Ranking  

• (GA Tech is 36, UT Austin is 46) 
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Atmospheric Attenuation: mm-waves 
 

• 0.012 dB over 200 m at 28 GHz 
• 0.016 dB over 200m at 38 GHz 

 
• White  

– Current cellular frequencies and low mm-wave 
• Blue  

– Short-range indoor communications, whisper 
radios of the future 

• Higher attenuation 

• Green 
– Future  backhaul and cellular frequencies  

• Low atmospheric attenuation 
• Multi-GHz Bandwidth  
• Directional Antenna Arrays with 

Beamsteering 
• CMOS: cost-effective with high 

frequency limits 
• Atmospherics are challenging 
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T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the Art in 60-GHz Integrated 
Circuits and Systems for Wireless Communications,” Proceedings of the IEEE, vol. 99, no. 8, 
pp. 1390–1436, August 2011. 



28, 38 and 60 GHz 
Measurement Campaigns 

• Sponsored by 
Samsung. 

• NSN, Intel, NSF 
have added 
support, 28, 60, 72 
GHz. 
 
 
 

TX location: 
ROG1 (Rogers 
Hall NYU-Poly, 
Brooklyn, New 
York) 

RX location: 
RX9 (Othmer 
Residence 
Hall, NYU-
Poly, Brooklyn, 
New York) 







28 GHz Channel Sounder 

Transmitter Block Diagram 
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• 400 Mega-chip-per-second (Mcps) 
sliding correlator 
• ~ 2.3 ns time resolution 
• 24.5 dBi (10.9° BW) horn antennas 
•15 dBi (30° BW) horn antennas 
• 30 dBm TX RF output  
• 183 dB path loss dynamic range 
• LabVIEW-controlled angular motor 
 

 



28 GHz Channel Sounder 

Receiver Block Diagram 



28 GHz Channel Sounder 
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             RX Hardware 
 

   TX  Hardware 
 



Manhattan Environment – Dense 
Urban 
• 3 TX sites 
• 25 RX sites 
 

• Pedestrian and 
vehicular traffic 

• High rise-buildings, 
trees, shrubs 
 

• TX sites and heights: 
• TX-COL1 – 7 m  
• TX -COL2 – 7 m 
• TX-KAU – 16 m 

 
• RX sites: 

• Randomly selected 
near AC outlets 

• Located outdoors on 
or near sidewalks 
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Small Scale Linear Track 
Measurements 

 Linear track setup in Brooklyn 
measurement campaign.  

• 0° RX azimuth angle 
− RX directly points to TX 

• Total track length: 107 mm (10λ)  
• Step sizes: 5.35 mm (λ/2) 
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Small Scale Linear Steps -  
Power Delay Profiles (PDPs) 

 3-dimensional PDP at angles along a small-scale track.  
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Power delay profiles measured 
over a 10λ linear track. TX was 
on the rooftop of Rogers Hall in 
downtown Brooklyn. RX was on 
Bridge street (135 meters away 
from the TX). The TX and RX 
were pointed for maximum signal 
power. Track step size was λ/2 
using  24.5 dBi horn antennas 
10.9̊ 3-dB beamwidths at both TX 
and RX. 
 
 

-64 dBm/ns 

-68 dBm/ns 

12 ns 

K. Wang., Y. Azar, T. S. Rappaport, et al, “28 GHz  
Angle of Arrival and Angle of Departure Analysis for  
Outdoor Cellular Communications using Steerable- 
Beam Antennas in New York City,” submitted to IEEE  
Vehicular Technology Conference (VTC), June 2013. 
 
 



Power Delay Profiles 
Largest Observed Multipath Excess Delay: 

 
LOS: 753.5 ns       NLOS: 1388.4 ns 

 PDP in LOS environment.  9  PDP in NLOS environment.  9 
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Y. Azar, G. N. Wong, T. S. Rappaport, et al,  “28 GHz Propagation Measurements for Outdoor Cellular Communications Using  
Steerable Beam Antennas in New York City,” submitted to IEEE International Conference on Communications (ICC), June 9–13 2013. 
 
 



28 GHz Path Loss Exponent  

 Measured path loss values relative to 5 m free space in Manhattan.  
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Y. Azar, G. N. Wong, T. S. Rappaport, et al,   
“28 GHz Propagation Measurements for  
Outdoor Cellular Communications Using  
Steerable Beam Antennas in New York City,”  
submitted to IEEE International Conference  
on Communications (ICC), June 9–13 2013. 
 



Received power, multipath, and 
RMS delay spread 

• NLOS Environment  
 

• 78 m TX-RX separation  
 

• Signal received in 28 of 36 
angles (10° increments) 
 

• Radius = Path loss relative 
to 5 m free space cal (dB) 
 

• 32, 61.0 dB, 101.0 ns: 
• # of resolvable multipath 
• Path loss (relative to 5 
meter free space cal) 
• Excess delay spread 
 
 

 Polar plot representing power received.  
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Resolvable Multipath Components  

 Average number of multipath  (X10) in LOS and NLOS 
conditions.  

Multipath in Urban Environment 
for each viable link: 
 
• LOS: 72 resolvable multipath 

components on average when 
energy received 
 

• NLOS: 68 resolvable multipath 
components on average when 
energy received 

• Key Finding: Many resolvable 
multipath components in a 
specific directional link, 
regardless of environment 
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Y. Azar, G. N. Wong, T. S. Rappaport, et al,  “28 GHz  
Propagation Measurements for Outdoor Cellular  
Communications Using Steerable Beam Antennas in  
New York City,” submitted to IEEE International  
Conference on Communications (ICC), June 9–13 2013. 
 



28 GHz TX-RX Angular Links 

 RX Azimuth vs. TX Azimuth.  

• Most links occurred 
• TX Az: -100°−100° 

• 91.6% of total links 
• RX Az: -160°−160° 

• 90.6% of total links 
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K. Wang., Y. Azar, T. S. Rappaport, et al, “28 GHz  
Angle of Arrival and Angle of Departure Analysis for  
Outdoor Cellular Communications using Steerable- 
Beam Antennas in New York City,” submitted to IEEE  
Vehicular Technology Conference (VTC), June 2013. 
 
 



28 GHz Small Scale AoA Measurements 

 Power received vs. receiver antenna azimuth angle.  

• AOA measurements from the TX on 
the rooftop of NYU-Poly’s Rogers Hall 
in downtown Brooklyn to the RX on 
Bridge street (135 meters away from 
the TX)  
 

• Received power versus receiver 
antenna azimuth angle using a 24.5 
dBi horn antenna. Each plot 
represents a position (Track Location 
1, 5, 10, and 21) along a small-scale 
21-step linear track with step sizes of 
λ/2 and a total length of 10λ 
 

• Small scale movement does not 
affect AOA 
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K. Wang., Y. Azar, T. S. Rappaport, et al, “28 GHz  
Angle of Arrival and Angle of Departure Analysis for  
Outdoor Cellular Communications using Steerable- 
Beam Antennas in New York City,” submitted to IEEE  
Vehicular Technology Conference (VTC), June 2013. 
 
 



Cumulative RX Distribution Function 
of AOA Power Azimuth Spread 

CDF of the AOA power azimuth spread 
(PAS) about the RX 0° azimuth angle 
(pointing directly at TX) in NLOS 
Manhattan, combining RX elevations of  
-20°, 0° and 20°, for 28 GHz and with TX 
and RX antenna gains of 24.5 dBi. The red 
circles represent the experimental PAS 
data, and the black line represents the 
Gaussian fit to the experimental data.  



Signal Outage in Manhattan 

  3-Dimensional view of downtown Manhattan. 

  Sectorized view of cellular coverage. 

• Signal acquired up to 200 m TX-RX         
separation 
• For outage: total path loss > 170 dB 
• 57% of all locations found to be outages 
(up to 500 m) 
• Only 16% of locations within 200 m were 
found to be outages (massive building) 
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Y. Azar, G. N. Wong, T. S. Rappaport, et al,  “28 GHz  
Propagation Measurements for Outdoor Cellular  
Communications Using Steerable Beam Antennas in  
New York City,” submitted to IEEE International  
Conference on Communications (ICC), June 9–13 2013. 
 



Reflection and Penetration 
Measurements 



Channel Sounder Equipment–
Reflection  

 Photographs for reflection measurements 
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Channel Sounder Equipment–
Penetration  

 Photographs for penetration loss measurements.  
 T.S. Rappaport 2013 



Channel Sounder Equipment–
Penetration  

 Setup for penetration loss measurements.  

• TX-RX separation distance: 5m  
– Free space 
– Test Material  

• TX and RX horn antennas: 
– 24.5 dBi gains  
– 10° half power beamwidth 
– 1.5 m heights  
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Penetration Loss Equation 
 
• Penetration Loss:  
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H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz Millimeter Wave Cellular Communication  Measurements for Reflection  
and Penetration Loss in and around Buildings in New York City,” submitted to IEEE International Conference on Communications  
(ICC), June 9–13 2013. 
 



Reflectivity of Materials at 
28 GHz 

Reflectivity for different common building materials.  
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H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz Millimeter Wave Cellular Communication  Measurements for Reflection  
and Penetration Loss in and around Buildings in New York City,” submitted to IEEE International Conference on Communications  
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Penetration Loss of Materials 
at 28 GHz 

Penetration loss for different common building materials.   
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H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz Millimeter Wave Cellular Communication  Measurements for Reflection  
and Penetration Loss in and around Buildings in New York City,” submitted to IEEE International Conference on Communications  
(ICC), June 9–13 2013. 
 



In-Building Reflections @ ORH 

 Possible in-building  reflection paths.  

9 
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• Possible reflector after wave 
penetration:  

– Elevator (metallic)  

 

H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz  
Millimeter Wave Cellular Communication  Measurements  
for Reflection and Penetration Loss in and around  
Buildings in New York City,” submitted to IEEE International  
Conference on Communications (ICC), June 9–13 2013. 

 



Indoor Penetration Loss  

 Outage map for penetration loss of multiple 
obstructions in an office environment.   

• Signal acquired 
– SNR sufficiently high for accurate 

acquisition  
– Penetration loss (relative to a 5 m free 

space test)  : < 64 dB 
• Signal detected:  

– SNR is high enough to distinguish signal 
from noise  

– Penetration loss (relative to a 5 m free 
space test):  between 64 and 74 dB 

• No signal detected:  
– Outage 
– Penetration loss (relative to a 5 m free 

space test): >74 dB 
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H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz Millimeter  
Wave Cellular Communication  Measurements for Reflection  
and Penetration Loss in and around Buildings in New York City,”  
submitted to IEEE International Conference on Communications  
(ICC), June 9–13 2013. 
 



Penetration Loss of Multiple 
Obstructions at 28 GHz 

 Penetration loss for multiple obstructions in an office environment.   
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H. Zhao, R. Mayzus, T. S. Rappaport, et al, “28 GHz Millimeter Wave Cellular Communication  Measurements for Reflection and Penetration  
Loss in and around Buildings in New York City,” submitted to IEEE International Conference on Communications (ICC), June 9–13 2013.. 

 



Key Requirement: Channel 
Simulation Software for Modems 

• Based roughly on the previously- 
developed “Simulation of Indoor Radio 
Channel Impulse-Response Models”  
a.k.a. “SIRCIM” program 
 

• Make use of experimentally calculated 
statistics to simulate the effect a channel 
might have on a broadcasted signal 
 

• Criteria such as environment (LOS / NLOS), transmitter-receiver separation, 
precipitation, angle of arrival (AOA), angle of departure (AOD) used to specify 
type of channel to model 
 

• Simulate delay spread / power delay profile, small scale fading, etc. 
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Concepts and Applications of 
Beamforming      

 
 
Beamforming or spatial filtering, is the method of creating the radiation pattern of the antenna 
array by adding constructively the phase of the signals in the direction of the targets/mobiles 
desired, and nulling the pattern of the targets/mobiles that are undesired.  
 
 
 
 
 
 
 
 
 
 
 
 
5G can exploit smart antenna systems, with more focus being placed on pointing in the direction 
of maximum signal levels using multiple beams (for simplicity, first ignore interference) 
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Beamforming history in 
cellular standards  

 
 Passive mode: (almost) non-standardized solutions 

• Wideband Code Division Multiple Access (WCDMA) supports direction of arrival (DOA) based 
beamforming 

 
 Active mode: mandatory standardized solutions 

• 2G — Transmit antenna selection as an elementary beamforming 
• 3G — WCDMA: Transmit antenna array (TxAA) beamforming 
• 4G evolution — LTE/UMB: MIMO precoding based beamforming with partial Space-Division 

Multiple Access (SDMA) 
• Beyond 3G (4G, 5G, …) — More advanced beamforming solutions to support SDMA such as 

closed loop beamforming and multi-dimensional beamforming are expected 
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Beamforming Architecture 
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Possibility of performing 
beamforming and beam-
combining  

Measured Power Delay Profiles (PDPs) at 28  
GHz for a LOS cellular channel in New York  
City using steerable beam 24.5 dBi antennas 
with 32 meter distance separation between 
transmitter and receiver. 

The PDP in the figure to the right shows 
the type of diversity of multipath at 28 GHz, 
where strong RF energy may be 
received and combined to improve  
link budget and MIMO capacity. 
 
A different pointing angle at the same RX 
location  yields a completely different 
 channel PDP. There is rich diversity in 
the different beams, themselves, and from  
beam to beam. 
. 
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Requirement: Adaptive 
Algorithms for Beamforming 

 
 Non-blind adaptive algorithms 
• Wiener Solution 
• Steepest-Descent Method 
• Least-Mean-Squares Algorithm  
• Recursive Least-Squares Algorithm  
 Blind Adaptive Algorithms 
• Algorithms based on estimation of DOAs of received signals (MUSIC, ESPRIT) 
• Constant Modulus Algorithm (CMA) (including Steepest-Descent CMA and Least-

Squares CMA) 
• Marquardt Method  
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Multipath shape factor theory 
• We are exploring the multipath shape factor theory (by Durgin) to find the 

pointing angles of multipath using very low overhead CW pilots received at 
multiple elements of an adaptive array  

Angular distribution of power, p(𝜃), for a 
sector of arriving multipath components. 

The multipath shape factor theory showed that the cross correlation of  
narrowband fading across an antenna manifold can accurately predict  
both the physical direction and the angular spread of multipath 
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G.D. Durgin and T.S. Rappaport, "Effects of Multipath Angular Spread on the Spatial Cross Correlation of Received  
Envelope Voltages," in IEEE Vehicular Technology Conference, vol. 2, 1999, pp. 996-1000. Also see subsequent journal 
papers. 
 



28 GHz conclusion (1) 
 Small-scale fading measurements along a track (limited number) 

Movement along a small-scale track does not induce much fading.  
• Power received has only 4 dB/ns variance, maximum of 12 ns 

excess delay variation 
• AOA does not change along a 107 mm track (10λ) 

 Path Loss Exponent (NLOS conditions) 
 Overall: n = 5.76 
 Strongest power received angles only: n=4.58 
 Cross Polarization diversity may allow independent signals 

 Link distributions  (more data to come this month) 
 AOA link: Sinusoidal  
 AOD link: Gaussian   

 Signal outage:  Maximum radial cell size for urban environment is ~ 200m 
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28 GHz Conclusion (2) 
 Outdoor building materials  

 Excellent reflectors  
• Largest reflection coefficient: 0.896 (tinted glass) 

 Highly attenuation from inside to outside of buildings  
• Largest penetration loss: 40.1 dB (tinted glass) 

 Indoor building materials  
 Less attenuation / Less reflective 

• Penetration Loss: 3.6 dB – clear glass;  6.8 dB – drywall 
• Reflection Coefficient: 0.62 – clear glass; 0.74 – drywall 

 Penetration loss for multiple obstructions  
 Material dependent  
 Distance dependent  

 
RECENT  JOURNAL PAPERS: 
 
Rappaport, et. al., IEEE Trans. Ant. Prop.,  April 2013. 
Rappaport et. al., IEEE ACCESS, May 2013. 
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